Conférence du 14 mai : programme détaillé et bios intervenants

Présentation de la plateforme BioFactory

Abdelkader Selmi, Responsable de la plateforme BioFactory, CPE Lyon

BioFactory est la plateforme de CPE Lyon pour la Recherche, le Développement et l’Innovation en bioproduction et biotechnologies. Disposant d’une chaîne de bioproduction moderne et innovante à l’échelle laboratoire, BioFactory a pour mission de former, accompagner et innover. BioFactory participe à la formation continue (collaborateurs) et initiale (étudiants) aux biotechnologies et à la bioproduction. BioFactory accompagne les entreprises de secteurs divers (agro-alimentaire, bioénergie, pharmaceutique…) pour le développement, l’optimisation et le scale-up de bioprocédés upstream (en bioréacteurs autoclavables ou à usage unique) ou downstream. BioFactory propose une gamme de services adaptés : formation, conseil, réalisation de projets R&D, fablab (mise à disposition de nos équipements pour vos collaborateurs).

Conception optimale de bioréacteurs de culture de cellules souches mesenchymateuses humaines, 

Eric Olmos, Professeur ENSAIA- LRGP Nancy


Les procédés de culture de cellules souches mésenchymateuses en bioréacteur agité reposent sur l’utilisation de microporteurs. Ces supports d’adhérence doivent être mis en suspension par une agitation suffisante. Celle-ci doit être un compromis entre une agitation trop faible qui pourrait induire des phénomènes de friction inter-particulaires et une agitation trop forte qui intensifierait les contraintes hydromécaniques et les collisions entre particules, avec des effets négatifs sur la quantité et la qualité de cellules produites. Au cours de cette présentation, une approche couplant expérience et modélisation par CFD sera présentée. Cette approche, basée sur des simulations numériques et des algorithmiques génétiques d’optimisation ont conduit à la conception de systèmes d’agitation optimisés et adaptés à la culture de CSM de cordons ombilicaux.

Ces activités de recherche s’inscrivent dans le projet ANR STEMCREATOR (205-2019) et dans le projet Européen INTERREG Improve-Stem (2017-2020).


Loubière, C., Delafosse, A., Guedon, E., Chevalot, I., Toye, D., & Olmos, E. (2019). Dimensional analysis and CFD simulations of microcarrier’just-suspended’state in Mesenchymal Stromal Cells bioreactors. Chemical Engineering Science. Sous presse,

Delafosse, A., Loubière, C., Calvo, S., Toye, D., & Olmos, E. (2018). Solid-liquid suspension of microcarriers in stirred tank bioreactor–Experimental and numerical analysis. Chemical Engineering Science, 180, 52-63.

Martin, C., Olmos, E., Collignon, M. L., De Isla, N., Blanchard, F., Chevalot, I., … & Guedon, E. (2017). Revisiting MSC expansion from critical quality attributes to critical culture process parameters. Process Biochemistry, 59, 231-243.

Olmos, E., Loubiere, K., Martin, C., Delaplace, G., & Marc, A. (2015). Critical agitation for microcarrier suspension in orbital shaken bioreactors: Experimental study and dimensional analysis. Chemical Engineering Science, 122, 545-554.

A propos de l’intervenant

Eric Olmos, Professeur en Génie des bioréacteurs à l’ENSAIA, Responsable du Master Génie des procédés biotechnologies BioIn, Chercheur au Laboratoire Réactions et Génie des Procédés, équipe Bioprocédés Biomolécules. Eric Olmos  réalise ses activités de recherche sur le couplage entre les phénomènes de transport (agitation, transferts gazeux) en bioréacteur et les performances du bioprocédé. Les procédés étudiés sont les  procédés de culture de cellules animales (lignées continues CHO, cellules souches mésenchymateuses de cordons ombilicaux et de moelle osseuse), de culture de microorganismes (Streptomyces, Corynebacterium glutamicum) et les procédés de méthanisation.

Suivi en ligne de nouveaux inhibiteurs métaboliques par spectroscopie raman pour les procédés culture de cellules CHO

Emma Petiot, Enseignant-Chercheur CPE Lyon

Résumé (ENG)

PROJET Collaboratif PFIZER St Louis, USA

Conventional feeding control strategies employ fixed volume semi-continuous feeding and concentrated feed media. They are commonly unable to respond to exact nutrient consumption demands from the cultures resulting in accumulation of metabolite by-products and depletion of strategic nutrients. In order to develop the next generation of fed-batch processes, predictive feeding models have to be developed integrating the real culture needs. This involves the implementation of new process analytical technologies (PAT) allowing collecting data directly inside the cell culture processes. Few technologies are available to monitor concentrations of metabolites within the bioreactor cultures and Raman spectroscopy is one of them. Additionally, novel growth inhibitors derived from the partial metabolism of amino acids were recently identified for MAb CHO cell cultures [1]. To further optimize these culture performance and increase productivity, the real-time monitoring of such inhibitors and their connected amino acids would be a strategic step towards next generation Mab feeding-strategy production process.

Three amino acids and three metabolic inhibitors were targeted for in-line Raman monitoring. First, off-line calibrations for each target metabolites were built thanks to 154 samples of three fed-batch bioreactor cultures of CHO cells. This calibration set included clarified and non-clarified culture samples spiked with target concentration of metabolites of interest thanks to a designed specific DOE protocol in order to obtain an optimal calibration set with de-correlated metabolites concentrations. Then, validation set was built with 47 additional samples from 2 supplementary bioreactor cultures. Satisfactory R2 & Q2 > 0.7 were obtained for calibration of the two metabolic inhibitors and two of the amino acids. Calibration (RMSEC), cross-validation (RMSECV) and prediction errors (RMSEP) were found to be always below 1.5mM representing 15% of the concentration range occurring in the culture.

  1. Mulukutla BC, Kale J, Kalomeris T, Jacobs M, Hiller GW. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng. 2017;114: 1779–1790. doi:10.1002/bit.26313

Bioelectrochemical systems (BES) for the development of waste biorefineries

Théodore Bouchez, Group leader, IRSTEA Paris Antony

Résumé (ENG)

BioElectrochemical Systems (BES) can become a cornerstone technology of environmental biorefineries, where mixed organic waste are converted to platform molecules. The principle of the technology relies on coupling the oxidation of mixed organic waste in an anodic compartment to the reduction of carbon dioxide in a cathodic compartment. This disruptive technology has been matured from TRL1 to TRL4 in the framework of the French BIORARE « Investissement d’Avenir » program (ANR-10-BTBR-02).

The procedures for drawing electrons out of various residual organic feedstock (sludges, biowaste) at high current densities ranging from 7 to 30 A/m2 were established. At the cathode, the possibility of microbial electrosynthesis of multicarbon platform chemicals through CO2 reduction by a mixed culture consortia was confirmed. Various procedures allowing the operation of BES comprising a bioanode oxidizing waste materials coupled to a cathode synthesizing platform organics were defined and patented. Stable operation of labscale BIORARE TRL3 reactors was obtained during several months with good production yields. A several fold decrease in electric power consumption compared to competing technologies was especially documented. A larger and optimized TRL4 reactor was then designed with the help of an engineering company. Consistent performances were again obtained during several months with mixed biowaste as a feedstock.

In addition to the development of the technology, scenarios for the integration of BES into existing waste treatment facilities have been studied, including a scheme where the BES could be coupled to an anaerobic digestion line. Life Cycle Assessment confirmed the environmental benefits potentially associated to this new technology. Market and regulatory studies were also favorable. Even if numerous technological, environmental and socio economical hurdles still need to be overcome, the results of the BIORARE project highlight the great potential of BES to become a technological cornerstone of future environmental biorefineries. A consortium for further maturation of the technology from TRL4 to TRL7 is currently under construction.

Single-use mixing solutions for large-scale media and buffer preparations and downstream unit operations

Myriam Lavie, Global Product Manager for Fluid Management Technologies at Sartorius Stedim Biotech, Aubagne, France

Résumé (ENG)

Single-use mixing systems are increasingly used in the manufacture of biopharmaceutical products as they offer improved mixing performances, extended functionalities, such as disposable sensors, and operational benefits. Single-use mixing systems have been widely adopted for buffer and media preparation and are now finding  applications in more critical and higher value unit operations in the downstream purification process steps.

This case study will address the challenges currently met when implementing large volume single-use mixing systems for the preparation of buffers and media solutions, for which strong mixing forces are required for rapid and efficient powder dissolution.

For the downstream unit operations where high-value purified products are processed, single-use mixing systems will raise additional needs such as low shear stress, in-line monitoring of process parameters and ultra-clean particulate free mixing conditions.

This presentation focuses on case studies using large volume single-use mixing technology. Scalability of buffer and media preparations from 50L to 2,500L is first demonstrated using a magnetically-driven mixing technology. A simulation of a low pH virus inactivation is then presented using a contactless levitated impeller technology and a single use pH sensor. Finally, an example of final formulation is discussed with the re-suspension of a vaccine adjuvant.

A propos de l’intervenante (ENG)

Myriam Lavie stands as Global Product Manager for Fluid Management Technologies at Sartorius Stedim Biotech, Aubagne, France

Myriam is in charge of the single-use mixers product range. She has more than 10 years of experience in engineering and marketing in the Biopharmaceutical industries and has been involved in many industrial projects for design, implementation and validation of single-use systems.

Myriam started her career in 2005 as a Process Engineer with GlaxoSmithKline Biologicals, Belgium. In 2007, she joined Sartorius Stedim Biotech as a Process Development Engineer for Fluid Management Technologies.

Myriam is a Process Engineer graduated from the “Ecole des Mines” of Albi, France.


Pour vous inscrire