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Abstract—Much attention has been paid to object classification
by CNN (convolutional neural network). The CNN has a great
ability to grasp efficient features from a large scale of training
samples automatically. In this paper, we tackle an issue of
transparent object classification, and investigate how the CNN
grasp transparent object features.

Index Terms—classification, light field, neural network, distor-
tion

I. INTRODUCTION

Image-capturing devices are becoming very common, along
with object classification softwares, to such an extend even a
simple cellphone can realise state-of-the-art image processing
methods. However, transparent objects do not offer features
easy to identify: instead of hiding the background like opaque
objects, they merely distort it . Therefore, their appearance
drastically change regarding to their environment, and tradi-
tionnal methods like SIFT or SURF [1] fail at identifying
such objects. This difficulty has been highlighted in a previous
paper [2] which proposed to use the light field camera (LFC)’s
potential to create the light field distortion (LFD) feature,
which uses the distortion made on the background by the ob-
ject according to its refraction caracteristics [3]. Even though
obtained results with this technique were way better than those
obtained with other identification methods, with 18 category
of objects and optimal conditions, recognition reached 85%
accuracy. Moreover, this feature highly depends on various
parameters (camera orientation, illumination, number of clus-
ter, etc), and setting those by hand can be very complex.
Various methods have tackled the problem of transparent
object recognition, through complex capture or processing
techiques [4], [5] .

On another hand, convolutional neural networks (CNN)
has shown excellent results regarding image processing and
object classification. Therefore they seem a viable option
to identify transparent objects [6], and might obtain better
results than hand made distortion feature. By learning features
autonomously, CNN can become a powerful and efficient
identification tool, however those features are hard to identify
or compare with complex hand made features. In this paper,
we study what kind of features such CNN learns at each layer,
and establish a methodology to identify if one of those features

is similar to LFD, when no preprocessing has been made on
the input data.

II. ANALYTICS METHODOLOGY

A. Light field dataset

The data used for this study was obtained with a
ProFUSION-25C [7], capturing 5*5 VGA images simulta-
neously from different viewpoints. Each image is originally
640*480 pixels, but they have been cropped to 480*432 pixels,
and set in black and white.

Data obtained from a LFC extends on four dimensions
(s,t,u,v): the viewpoint plane (s,t) can be associated to the
position of the camera among the 5*5 ProFusion25 cameras,
and the image plane (u,v) can be associated to the usual width
and height coordinates of a pixel for each image captured
by the ProFusion-25C cameras(cf Fig. 1). 20 different objects
were captured in front of 10 backgrounds (One can argue that
our dataset is very limited, but the purpose of this study is
to establish a methodology to identify what kind of feature is
learned).

B. Light field data adaptation to CNN

Despite the fact that LF data extends on four dimensions,
a 3D Convolutional Neural Network (CNN) has been used to
ease the research process. To adapt the data to such a CNN,
frames (u,v) from a single axis (s) has been used, representing
five consecutive frames as shown in Fig. 1. Limitating the
data this way allows us to process it in a somewhat similar
way than a video (time, width, height), and each input data is
therefore set as (s,u,v), also described as (depth,width,height).
The architecture of our CNN is presented in Fig. 2, (inspired
by [8]). We can notice that the original input’ scale is divided
by 3 through the first pooling layer, in order to reduce the size
of the processed data.

C. Analytics strategy

To classify objects in various categories, features are learned
by the CNN through its convolutional (conv) layers, which
are the heart of the CNN. They are defined by the number of
channel it outputs and the conv kernel (weights and bias) of
each channel. A conv layer uses one kernel for each channel
it has to convolve the input data it recieves. Weights and bias



Fig. 1. Selection of frames among LF capture data.

Fig. 2. CNN architecture.

of each kernel are independent from each other, and evolve
through the learning process. When the input data is spread
among numerous channels, each output channel realize a com-
position of the input channels that has been convolved by the
kernel. Its output (“activation map”) is therefore a processed
version of the input,and will be transmitted to the next layer
of the CNN. The study of each channel can be separated
in two parts: the study of a channel characteristics (ie the
“features” it uses to process the input data), and its role inside
the entire CNN. Studying a channel feature can be done in
various ways for a classification process, and this paper focus
on two different approaches: The study of a channel when a
specific classifier (label) is given, and the study of specific
areas in the input data. Since each channel uses the output of
numerous channels from the previous layer, a channel may or
may not be crucial for the classification process. To tackle this
issue, a methodology to identify the importance of a channel
in the CNN is also given in this paper. The combination
of channel characteristics and importance could allow us to
identify what kind of features the crucial channels learn to
classify transparent objects in different labels.

III. COMPARE RESULTS FROM EACH LABEL

Since our objective is to understand how each channel
works, it is crucial to consider every parameter that may vary
in our study. For classification, considering each specific object

is essential since some channel’s feature might be more or less
identified within our pannel of labels.

A. Methodology

Once the CNN is fully trained, we can process each label
respectively, and get general information to compare with
other label’s results. Since our dataset is limited, all input
data for one label can be combined in a single batch, and the
output of each convolutional layer can be compared with other
batches. It is also important to remember how the dataset for
every object is made: Among the 10 LF pictures of the same
object, 8 are used for the training set, and 2 for the validation
set. Since for each object the same 8 backgrounds have been
used for the training set, it is therefore certified that the only
difference between each set of data is the object (for each
batch, the same backgrounds are used).

In this study, we consider the sum of the absolute values
from each channel’s output (its “activation map”), along the
the 3 dimensions of the data (Width, Height, Depth).

This CNN is composed of 4 convolutional layers of 64
channels each, in order to classify 20 different types of objects.
Since the output of every channel is completely different, we
need to normalize them if we want to compare the results
for each label more efficiently. This normalization is made by
bringing each channel’s output between 0 and 1: We focus
on the response to each label, rather than the mean difference
between each channel.

B. Results

To compare results between label for each channel of the
CNN, Fig. 4 presents the normalized sum of activation maps
on an intensity scale (if white, the sum has its highest value, if
black, it has the lowest). For each layer, channels are randomly
generated and evolve through the learning process indepen-
dentely from each other, however some channels’ results can
have strong similarities between each other. Channels have
therefore been reordered by similarities in this publication,
and the same rearrangement have been made for label and area
processing. Fig. 3 illustrates how results presented in Fig. 4
has been obtained (Details of reordering are not given).

C. Interpretation

For most of the channels, some clear differences can be
observed between the labels, and apart from some specific
channels (first layer, channel 1 to 25), we obtain very different
result between them: Only by observing the most general
aspect of activation maps, it is possible to compare how
channels percieve each label. More rarely, some channels’s
response is limited to very few objects (layer 1 channel
59 to 61): with a deeper analysis of the CNN we might
observe that this kind of channel is crucial for the detection of
these specific labels. Despite the normalization, some channels
seems equally active for every label. When checking those
channels, their output maps are always at zero: they are not
used by the CNN and the final result do not change if they
are taken out of the classification process.



Fig. 3. Each block corresponds to one of the 4 convolutional layer’s output. Each pixel value is the normalized sum of the activation maps for one specific
channel (horizontal axis) when a selected object’s data is inputed (vertical axis).

Fig. 4. Normalized sum of each channel’s output.

IV. COMPARE RESULTS FROM EACH AREA

Our first approach in identifying each channel’s character-
istics consist on considering that our data is composed of 3
areas: the background, the edges of the object, and the inside
of the object (cf Fig. 5). We therefore identify which area
each channel is mostly activated by. Since some features (like
LFD) are in a single area, channels focusing on a different

area cannot be using this feature.

Fig. 5. Input data: Delimitation of each area

A. Areas’ evolution through the CNN layers

The areas are being modified by each CNN layer, especially
when conv layers imply the “Depth” axis: Between each frame
of the depth, the object slightly moves, and areas of both
frames must be taken into account.(cf Fig. 6)

Fig. 6. Output of a specific channel, colored by area. Background area is in
red, edge is in green, inside is in blue. When the different area of various
depth frames are superposing, a mix of those colors is obtained

B. Comparing activation maps’values for each area

For each channel, we compare the mean of activation values
among each different area: The area with the highest value will
be the one the channel’s feature is focused on. Using a color



for each area, channels for which the feature is mostly reacting
to background data will be colored in red, edge-focusing
channels will be in green, and inside-focusing channel will
be in blue. We apply this method for each element of the
batch, since some channels might be more active on specific
classifiers.(cf Fig. 7)

C. Results

Fig. 7. Each color correspond to the area major area for a specific label, for
a given channel.

Most of the results will be displayed in part V/B/2 of this
paper since combining results from various methods offer the
most interesting analysis. Surprisingly, channels focusing on
the background area gets more important when diving through
the CNN’s layers: analysing the importance of such channels
is essential to understand the classification process. After
reordering channels the same way than before, we notice the
apparition of patterns between the same channels than those
on label comparison.

V. HOW DOES EACH CHANNEL INFLUENCE THE
CLASSIFICATION PROCESS?

For now, most of our attention has been given to normalized
results from each channel. Nevertheless, un-normalized results
show that some channels’outputs are way more important
than others. Our objective here it to know if mostly ativated
channels are more important in the classification process, and
what makes a channel important.

A. Killing method

Once the CNN is fully trained, this method consists on
setting a chosen channel to 0 (“killing” the channel), and

compare the CNN’s output with its standard output (when
no channel is killed). By doing the same process than Fig.
4, we can efficiently establish which channel of the lower
layers use the chosen killed channel, and on which specific
labels. By obtaining the confusion matrix of the CNN in every
case, we can also know the importance of the channel for the
classification process, for each label.

B. Results: Label mapping of each channel

Fig. 8. Killed channel: layer 1, channel 5; then layer 2, channel 22

Fig. 8 contains the difference between standard result (Fig.
4) and result when two different channels have been killed.
Entirely black channels are channels that almost do not use
the killed channel: As expected, channels from upper layers
do not use lower channels, and every channel of the same
layer are independent, which is why the first layer’s value are
at 0 when a channel from the second layer is killed. Some
channels also only influence specific labels, which is why we
get such different results for the second killed channel. This
analysis also confirms that unused channels do not influence
the rest of the CNN.

The two previous methods allowed us to identify similar
channels (channels that focused on the same labels, and the
same areas). Interestingly, those channels are used by the same
channels on the lower levels: For such channels, maps as
Fig. 8 are different. Two reasons can explain this: either the
channels are different on other features than those studied in
the previous methods, or the CNN structure is not efficient
enought to see they are similar, and they can be replaced by
one another. In such a case, we could improve the efficiency
of the CNN and save the neccessary time or ressources to
process two permutable channels.

C. Results: Confusion matrices

When each column contains the number of estimated label,
each column contains the real labels. Therefore, a classification
process reaches a perfect score when its confusion matrix is
diagonal. For this part, only the training set has been used,



since we get a 100% recognition rate with it. This way,
differences can be more easily identified: any non diagonal
result would be different from the original results.

Fig. 9. All 64 confusion matrices when one of the first layer’s channel is
killed

When outputting the differences only (ie only when the
CNN makes mistakes), it becomes clear that, with the training
set, a lot of channels could be left with not change of
efficiency. Among those channels, we can find those who
are unused by the network that we identified previously.
Nevertheless, with any validation set, some confusion matrix
among those channels might change: therefore these channels
would be used for classification, but their role would not be
important enought to shift the result with the training set.
If some channels are important in various cases, other are
specifically useful to identify (“is”) or differenciate (“is not”)
objects. Those channels’ confusion matrix have strong values
along the columns or lines

VI. COMBINING RESULTS

By combining channel characteristics and importance,we
can identify what kind of features the crucial channels learn
to classify transparent objects. For example, we can study the
final results (confusion matrices) when channels associated to
a specific label are killed, or channels associated to a specific
area.

A. Modifying channels associated to labels

Among various characteristics that can be identified on the
classified label map (Fig. 4), we decided to focus on two:
channels focused on specific labels, and channels with similar
results.

1) Focused channels: Deleting those channels should give
results very different from deleting channels more general: if
those channels ensure the object does not belong to a specific
category, then the number of objects interpreted as this one
should get higher. If it helps confirm the input belongs to a
category, the number of object identified as this one should
drop.

2) Similar channels: Similar channels tend to focus on
identical features, and might therefore be permuted. To confirm
this, we tried to copy the same channel in channels similar to
this one. Testing reveals that despite their similarities, some

Fig. 10. Area of interest from classified label mapping

of those channels were focusing on different features and
therefore could not be permuted (as concluded in section
IV/B). However, for some channels, accuracy is almost not
impacted: For example, channel 2 of the first conv layer is
important for the classification process (when it is set to 0, the
accuracy drops significantly, as reveals its confusion matrix on
Fig. 11), however when it is replaced by the channel 1 of the
first layer, accuracy drops by less than 5% .

Fig. 11. This confusion matrix reveals how important this channel is: When
killed, using the training set, accuracy drops from 100% (diagonal matrix) to
38.75%

Following careful indicators, some channels could be com-



pletely replaced by others with no impact on accuracy and
increase of processing speed.

B. Changes according to the focused area

1) Background-focused channels (ie “bgd channels”) on
layer 1 (11 channels): When killing only one channel at a
time, the mean accuracy obtained with bgd channels is 91%
on layer 1, but this mean accuracy for any channel on layer 1
is at 84 %. Moreover, the most important of the bgd channel
(accuracy of 69 % ) is the one that partially focused on the
inside area for certain labels. Bgd channels seem to have less
impact than others on classification for the first layer.

2) Non bgd channels on layer 3 (15 channels): When
killing only one channel at a time, the mean accuracy obtained
with those non bgd channels is 44.5% on layer 3, but this mean
accuracy for any channel on layer 3 is at 84. %. Moreover,
when all non bgd channels are deleted, classification only
outputs 2 labels for every input data (label 4 and 9). It therefore
seems that, at layer 3, non bgd channels are essential for
classification.

3) Non bgd channels on layer 4 (5 channels): On the last
layer, the most important channel (accuracy drops to 50%
when killed, when it only drops to 86% when the second most
important is killed) is associated to edges or inside areas (not
background). Accuracy drops to 30% when those five channels
are killed at the same time.

Despite having much more channels focused on the back-
ground area, the most important channels seem to be associ-
ated to other areas. However, bgd channels are also essential
for the classification process, since non bgd channels on the
deeper levels of the CNN also use bgd channels of higher
layers.

C. Discussion

Even though we get an average 82% recognition accuracy
at the end of our training with the validation set, this encour-
aging result might be explained by the very limited dataset
we currently use: For example, the number of background
realted channels is higher than explected since the object
is independent from this area. Although this methods needs
refining, it gives interesting results, and its principle can be
adapted for other studies (for example, a similar study along
the depth of the data can also be worth of interest). Pursuing
the study of each specific kernel’s perks can allow us to build
(automatically or manually) a CNN from pre existing, efficient
convolutional kernels, while skipping most of the training part
(which is one of the most expensive part when using a CNN).
Once perfected, such study might not even need as important
dataset as we currently need to build efficient CNN.

VII. CONCLUSION

This paper presented various CNN analysis methods that
has been tested and cross-analysed in order to have a better
understanding of the features learned by the CNN to classify
transparent objects. Finding out how each channel consider
different labels for the classification process, and which area

of the input images were mostly activated help us grasping
the features identified by each channel: Area analysis can be
especially useful in order to identify features associated to
a specific area. Combining this analysis with an estimation
of each channel’s importance allow us to understand how
efficient a feature is for the classification process. With this
work focused on transparent object classification, two strong
conclusions were found:

• Despite being the most essential channels, non back-
ground channels on lower levels use (and therefore de-
pends on) background channels, wich are more numerous
but less important.

• The CNN can be highly improved: some channels have
little to no influence for the classification, but yet are
processed. Moreover, some channels learn similar fea-
tures and could be interchanged: keeping only one of
such channels could reduce the processing cost.

By extending this work to other classification process, one
can have a better understanding of his CNN (for example,
identify which channels are sensitive to high gradient, and
see the consequences of blurring the input on such channels
and the final result). Moreover, studying the features and
importance of each channel can help improving and optimizing
a CNN. By automatically improving a CNN along some
controlled parameters, a fully trained and optimized CNN
could process data faster and more efficiently than before.
Identifying which kind of channels are essential to specific
classification processes could allow us to initiate a CNN
with adequate values and therefore greatly reduce the learning
process.
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